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Abstract 

The aim of this study is to compare multiple comparison procedures controlling the maximum type I familywise 

error rate with those controlling the false discovery rate through simulation results. Specifically, we apply them to 

the multiple comparison with a control for normal means and give simulation results regarding the maximum type 

I familywise error rate, the false discovery rate and the power of the test intended to compare the procedures. 
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1. Introduction 

 

Assume there are plural populations. When we 

compare the values of parameters of them 

simultaneously, we set up hypotheses for comparing 

them and test them using multiple comparison 

procedures. When we specify the values of parameters, 

the probability that at least one true null hypothesis is 

rejected for multiple comparison procedures is called 

the type I familywise error rate (FWER). FWER is the 

abbreviated notation of familywise error rate. Critical 

values of multiple comparison procedures are 

determined so that FWER may not be larger than a 

specified significance level under the assumption that 

all null hypotheses are true. However, the maximum 

type I FWER for all sorts of arrangements of 

parameters is controlled weakly or strongly at a 

specified probability. Controlling the maximum type I 

FWER weakly at a specified probability means that the 

type I FWER is greater than the specified probability 

for certain arrangements of parameters. On the other 

hand, controlling the maximum Type I FWER strongly 

at a specified probability means that the type I FWER 

is not greater than the specified probability for all sort 

of arrangements of parameters. Controlling the 

maximum Type I FWER strongly is more preferable 

compared to controlling it weakly for multiple 

comparisons. Single step multiple comparison 

procedures like Tukey (1953) and Dunnett (1955) and  
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stepwise multiple comparison procedures like 

Dunnett and Tamhane (1991, 1992) and Marcus et al. 

(1976) control the maximum Type I FWER strongly. 

On the other hand, when we specify the values of 

parameters, let R be the number of hypotheses which 

are rejected by the test and let V be the number of true 

hypotheses which are rejected by the test. The 

expectation of V/R is called the false discovery rate for 

the specified values of parameters (FDR). FDR is the 

abbreviated notation of false discovery rate. 

Controlling FDR at a specified value means that FDR is 

not greater than it for all sorts of arrangements of 

parameters. Benjamini and Hochberg (1995) 

proposed a stepwise procedure which controls FDR at 

a specified value under the assumption that the 

correlation coefficient of each two statistics for testing 

is zero. Then, Benjamini and Hochberg (2000) 

proposed an adaptive stepwise procedure and 

confirmed that their procedure controls FDR at a 

specified significance level through the simulation 

under the assumption that the correlation coefficient 

of each two statistics for testing is zero. Furthermore, 

Benjamini and Yekutieli (2001) proposed a stepwise 

procedure which controls FDR at a specified 

significance level under the assumption that the 

correlation coefficient of each two statistics for testing 

is non-negative. Horiuchi and Matsuda (2006) 

compared the three procedures through the 

simulation regarding FWER and FDR. In almost all 

cases Benjamini and Yekutieli (2001)’s procedure is 

most conservative and Benjamini and Hochberg 
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(1995)’s procedure is more conservative compared to 

Benjamini and Hochberg (2000)’s procedure. 

Procedures controlling the maximum Type I FWER 

strongly also control FDR. However, procedures 

controlling FDR do not always control the maximum 

Type I FWER strongly. Specifically, procedures 

controlling the maximum Type I FWER strongly is 

more conservative. Therefore, it is preferable to use 

procedures controlling the maximum Type I FWER 

strongly for problems having verification aspect. On 

the other hand, it is more preferable to use procedures 

controlling FDR for exploratory problems. However, 

for two types of procedures we want to investigate 

actual differences regarding the maximum Type I 

FWER, FDR and the power of the test. 

In this study we compare stepwise multiple 

comparison procedures controlling the maximum 

type I FWER with those controlling FDR through 

simulation results. Specifically, we apply them to the 

multiple comparison with a control for normal means 

and give simulation results regarding the maximum 

type I FWER, the FDR and the power of the test 

intended to compare the procedures. For multiple 

comparison with a control Dunnett (1955) proposed 

the single step procedure. Then, Dunnett and 

Tamhane (1991) constructed the sequentially 

rejective step down procedure. Furthermore, Dunnett 

and Tamhane (1992) constructed a step up procedure. 

For three procedures the maximum Type I FWER is 

controlled strongly at a specified significance level. 

Here we focus on the procedures proposed by 

Benjamini and Hochberg (1995) and Benjamini and 

Yekutieli (2001) among procedures controlling FDR. 

We compare the five procedures through the 

simulation results. 

2. Multiple comparison with a control for 

normal means 

 

Assume there are K normal populations N(µk,σ2) (k 

= 1,2,...,K). Here σ2 is unknown. Dunnett (1955) 

discussed the multiple comparison for comparing µ1 

with µ2,µ3,...,µK simultaneously, which is called 

multiple comparison procedure with a control. Here 

we set up a null hypothesis H1k and its alternative 

hypothesis 𝐻1𝑘
𝐴  as 

 

for k =2,3,...,K and test them simultaneously using a 

sample Xk1, Xk2, ..., 𝑋𝑘𝑛𝑘
 from N(µk,σ2) for k = 1,2,...,K. 

 

 

3. Single step procedure 

 

First, we discuss the single step procedure 

proposed by Dunnett (1955). We consider the 

simultaneous test of H12,H13,...,H1K based on the single 

step procedure. We use the statistic 

 
for testing H1k. Here 

, 

whereN = ∑ 𝑛𝑘
𝐾
𝑘=1  . If 𝑆1𝑘 > 𝑐  for a specified critical 

value c, H1k is rejected. Otherwise, it is retained. We 

determine c so that 

 

for a specified significance level α when H12, H13, ..., H1K 

are true. The formulation of P(maxk=2,3,...,K S1k > c) is 

given in Nagata and Yoshida (1997). 

 

4. Sequentially rejective step down procedure 

The sequentially rejective step down procedure 

consists of K−1 steps of tests. Assuming all 

𝐻12, 𝐻13,⋯ , 𝐻1𝐾   are true, we determine 

cm  (m = 1,2,...,K − 1) 

as the minimum c satisfying 

 

for l1,l2,...,lm chosen from 2,3,...,K arbitrarily. The 

formulation of P(max𝑘=𝑙1,𝑙2,⋯,𝑙𝑚
𝑆1𝑘 > c)  is given 

similarly as that of P(maxk=2,3,...,K S1k > c). Arranging 

S12,S13,...,S1K in order of a size of value, assume 

S(1) ≤ S(2) ≤ ··· ≤ S(K−1). 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) denote hypotheses corresponding 

to  𝑆(1) ,  𝑆(2) , ⋯ , 𝑆(𝐾−1) . Then, we test 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) sequentially as follows.  

Step 1. 

Case 1.If 𝑆(𝑘−1) ≤ 𝑐𝑘−1,we retain 𝐻(1), 𝐻(2),⋯, 𝐻(𝐾−1) 

and stop the test. 

Case 2. If 𝑆(𝑘−1) > 𝑐𝑘−1, we reject 𝐻(𝐾−1) and go to the 

next step. 
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Step 2. 

Case 1. If 𝑆(𝑘−2) ≤ 𝑐𝑘−2, we retain 𝐻(1), 𝐻(2),⋯, 𝐻(𝐾−2) 

and stop the test. 

Case 2. If 𝑆(𝑘−2) > 𝑐𝑘−2, we reject 𝐻(𝐾−2) and go to the 

next step.  

We repeat similar judgments till up to Step K − 1. 

 

5. Step up procedure 

 

First, we introduce notations which were used by 

Hayter and Tamhane (1991) and Dunnett et al. (2001). 

Let W1,W2,...,Wl be statistics. Let b1,b2,...,bl be constants 

satisfying b1 < b2 < ··· < bl. Calculating W1,W2,...,Wl  

based on observations and rewriting indices of 

W1,W2,...,Wl  according to the order of the size of value, 

we assume 𝑊1
(1)

≤ 𝑊2
(2)

≤ ⋯ ≤ 𝑊𝑙
(𝑙)

  is obtained. If 

𝑊1
(1)

≤ 𝑏1, 𝑊2
(2)

≤ 𝑏2,⋯, 𝑊𝑙
(𝑙)

≤ 𝑏𝑙 , we denote 

     (W1,W2,...,Wl) ≤ (b1,b2,...,bl).                 (5.1) 

The event (5.1) is recursively divided into plural 

disjoint events. 

The step up procedure consists of K − 1 steps of tests. 

We want to determine critical values of the step up 

procedure c1,c2,..., 𝑐𝐾−1 recursively so that 

 c1 ≤ c2 ≤ ··· ≤ 𝑐𝐾−1 (5.2) 

and 

 

for 𝑆1𝑖2
 ,  𝑆1𝑖3

 , ⋯ ,  𝑆1𝑖𝑚
  chosen arbitrarily from 

S12,S13,...,S1K for each 2 ≤ m ≤ K under H12 ∩ H13 ∩ ··· ∩ 

H1K. However, if K ≥ 4, it is difficult to indicate the 

existence of c1,c2,..., 𝑐𝐾−1   satisfying (5.2) and (5.3). 

However, Dunnett and Tamhane (1992) confirmed the 

existence of c1,c2,..., 𝑐𝐾−1 satisfying (5.2) and (5.3) for 

K ≤ 8 through the numerical calculations. 

Here we assume that c1,c2,...  𝑐𝐾−1   satisfying (5.2) 

and (5.3) are obtained. Arranging S12,S13,...,S1K in order 

of a size of value, assume 

S(1) ≤ S(2) ≤ ··· ≤ S(K−1). 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) denote hypotheses 

corresponding to  𝑆(1), 𝑆(2),⋯ , 𝑆(𝐾−1). Then, we test 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) as follows.  

Step 1. 

Case 1: If S(1) > c1, we reject H12,H13,...,H1K and stop the 

test. 

Case 2: If S(1) ≤ c1, we retain H(1) and go to Step 2. 

Step 2. 

Case 1: If S(2) > c2, we reject H(2),H(3),..., 𝐻(𝐾−1)  and stop 

the test. 

Case 2: If S(2) ≤ c2, we retain H(2) and go to Step 3. 

 

 We repeat similar judgments till up to Step K −1. 

6. Stepwise multiple comparison procedure 

controlling FDR 

 

Here we construct a stepwise multiple comparison 

procedure controlling FDR at α referring to Benjamini 

and Hochberg (1995) and Benjamini and Yekutieli 

(2001). 

 

6.1. Stepwise multiple comparison procedure 

based on Benjamini and Hochberg (1995) 

 

We should calculate p-value for each H1k using the 

sample. Let 𝑆1𝑘
∗   be the value of S1k  calculated using the 

sample. p-value for H1k  is given by 𝑝𝑘 = 𝑃(𝑆1𝑘 > 𝑆1𝑘
∗ ) 

under H1k. First, we apply Benjamini and Hochberg 

(1995)’s procedure to our problem. Assume  

𝑝(1) ≤ 𝑝(2) ≤ ⋯ ≤ 𝑝(𝐾−1)                   (6.1) 

is obtained by arranging p-values p2,p3,...,pK regarding 

size. Let 𝐻(1) ,  𝐻(2) , ⋯ , 𝐻(𝐾−1)  be hypotheses 

corresponding to (6.1). We test 𝐻(1) ,  𝐻(2) ,⋯ , 𝐻(𝐾−1)  

stepwisely as follows.  

Step 1. 

Case 1. If 𝑝(𝐾−1)≥ α, we retain 𝐻(𝐾−1)  and go to Step 2. 

Case 2. If 𝑝(𝐾−1)< α, we reject 𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) and 

stop the test. 

Step 2. 

Case 1. If 𝑝(𝐾−2) ≥ (K − 2)α/(K − 1), we retain 𝐻(𝐾−2) 

and go to Step 2.  

Case 2. If 𝑝(𝐾−2)  < (K − 2)α/(K − 1), we reject 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−2) and stop the test. 

... 
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Step K − 1. 

Case 1. If p(1) ≥ α/(K −1), we retain H(1) and stop the test. 

Case 2. If p(1) < α/(K −1), we reject H(1) and stop the test. 

Since S12,S13,...,S1K are not mutually independent, we 

can not guarantee that the stepwise procedure based 

on Benjamini and Hochberg (1995)’s procedure 

controls FDR at α. However, Horiuchi and Matsuda 

(2006) confirmed that Benjamini and Hochberg 

(1995)’s procedure controls FDR at α in almost all 

cases through the simulation. 

6.2. Stepwise multiple comparison procedure 

based on Benjamini and Yekutieli (2001) 

 

Next, we apply Benjamini and Yekutieli (2001)’s 

procedure to our problem. Let 

 . 

We test 𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) stepwisely as follows.  

Step 1. 

Case 1. If 𝑝(𝐾−1) ≥ α∗, we retain  𝐻(𝐾−1)  and go to Step 2. 

Case 2. If 𝑝(𝐾−1) < α∗, we reject 𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) and 

stop the test.  

Step 2. 

Case 1. If 𝑝(𝐾−2)≥ (K − 2)α∗/(K − 1), we retain 

𝐻(𝐾−2) and go to Step 2.  

Case 2. If 𝑝(𝐾−2)  < (K − 2)α∗/(K − 1), we reject 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−2) and stop the test. 

... 

Step K − 1. 

Case 1. If p(1) ≥ α∗/(K − 1), we retain H(1) and stop the 

test. 

Case 2. If p(1) < α∗/(K−1), we reject H(1) and stop the test. 

Benjamini and Yekutieli (2001)’s procedure is more 

conservative compared to Benjamini and Hochberg 

(1995). Letting 

, 

the correlation coefficient between S1k and S1l (k ≠ l) 

is λ1kλ1l > 0. Therefore, we can guarantee that the 

stepwise procedure based on Benjamini and Yekutieli 

(2001)’s procedure controls FDR at α. 

 

6.3. Stepwise test using critical value 

 

Instead of calculating p-values in the test, it is 

convenient to set up critical values for the test. We 

discuss Benjamini and Hochberg (1995)’s procedure. 

The following discussion is also applied to Benjamini 

and Yekutieli (2001)’s procedure. 

We determine cl by 

∫ 𝑓(𝑡)𝑑𝑡
𝑐𝑙

0
=

𝐾−𝑙

𝐾−1
𝛼                            (6.2) 

for l = 1,2,...,K − 1. Here f(t) is the probability density 

function of t distribution with N − K degrees of 

freedom. Then c1 < c2 < ··· < 𝑐𝐾−1. Assume 

 
is obtained by arranging p-values 𝑆1

∗, 𝑆2
∗,⋯, 𝑆𝐾−1

∗   

regarding size. The stepwise test for 

𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1) is carried out as follows.  

Step 1. 

Case 1. If 𝑆(1)
∗ ≤ 𝑐1, we retain 𝐻(𝐾−1) and go to 

Step 2. 

Case 2. If  𝑆(1)
∗ > 𝑐1 we reject 𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−1)  and 

stop the test. 

Step 2. 

Case 1. If  𝑆(2)
∗ ≤ 𝑐2, we retain 𝐻(𝐾−2)  and go to Step 3. 

Case 2. If  𝑆(2)
∗ > 𝑐2, we reject 𝐻(1), 𝐻(2),⋯ , 𝐻(𝐾−2) and 

stop the test. 

... 

Step K − 1. 

Case 1. If  𝑆(𝐾−1)
∗ ≤ 𝑐𝐾−1 , we retain H(1) and stop the 

test. 

Case 2. If 𝑆(𝐾−1)
∗ > 𝑐𝐾−1, we reject  H(1) and stop the test. 

The process of the test is similar to that of the step 

up procedure constructed by Dunnett and Tamhane 

(1992). 

 

7. Power of the test 

Assume µ1 = µi  for i = 2,3,...,K0 and µ1 ≠ µi  for i= K0 + 

1,K0 + 2,...,K. The power of the test is the probability 

that 𝐻1𝐾0+1,𝐻1𝐾0+2,⋯,𝐻1𝐾  are rejected in the test. For 

formulating the power we should specify the value of 

the difference δ1i = µi−µ1 for i = K0+1,K0+2,...,K. The 
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power of the test is formulated for the single step 

procedure, the sequentially rejective step down 

procedure and the step up procedure. The formulation 

of the power for the procedures proposed by 

Benjamini and Hochberg (1995) and Benjamini and 

Yekutieli (2001) can be obtained using that of the step 

up procedure. 

 

8. Numerical results 

 

In this section we give some numerical examples 

regarding critical values and power of the test 

intended to compare the procedures. We use 

abbreviated notations. BH means the procedure based 

on Benjamini and Hochberg (1995) and BY means the 

procedure based on Benjamini and Yekutieli (2001). 

Furthermore, SS, SD and SU mean the single step 

procedure, the sequentially rejective step down 

procedure and the step up procedure, respectively. 

Let K = 5 and α = 0.05. We set up two types of 

(n1,n2,n3,n4,n5) as 

Sam.1 : (15,15,15,15,15), Sam.2 : (10,20,15,20,10). 

Table 1 gives critical values of SD and SU for Sam.1. 

Table 2 gives them for Sam.2. The critical value of SS is 

equal to c5 of SD. Critical values of BH and BY are given 

in Table 3. 

Next, we investigate FWER and FDR for five 

procedures. Assume following three cases. 

Case 1. µ1 = µ2 = µ3 = µ4 = 0, µ5 = δ. 

Case 2. µ1 = µ2 = µ3 = 0, µ4 = µ5 = δ. 

Case 3. µ1 = µ2 = 0, µ3 = µ4 = µ5 = δ. 

Here δ > 0. The true hypotheses in Case 1 are H12,H13, 

H14. The true hypotheses in Case 2 are H12, H13. The 

true hypothesis in Case 3 is H12. 

Since we should specify the value of σ2 for 

computing FWER and FDR, let σ2 = 1. Table 4 gives the 

type I FWER in Cases 1 to 4 for δ = 0.5. Table 5 gives 

them for δ = 1.0. Table 6 gives FDR in Cases 1 to 4 for δ 

= 0.5. Table 7 gives them for δ = 1.0. They are 

calculated by Monte Carlo simulation with 1,000,000 

repetitions. The type I FWER of BH is occasionally 

greater than α = 0.05. The type I FWER of BY is always 

smaller than α = 0.05 and it is always smaller than 

those of SD and SU. Although it is not mathematically 

proved that FDR of BH controls the specified 

significance level under the assumption that the 

correlation coefficient of each two statistics for testing 

is positive, it is always smaller than α = 0.05. FDR of BY 

is always smaller than those of SD and SU. The results 

show that BY is more conservative compared to SD 

and SU. 

Next, we consider the power of the test. Assume 

following four cases. 

Case 1. µ1 = µ2 = µ3 = µ4 = 0, µ5 = δ. 

Case 2. µ1 = µ2 = µ3 = 0, µ4 = µ5 = δ. 

Case 3. µ1 = µ2 = 0, µ3 = µ4 = µ5 = δ. 

Case 4. µ1 = 0, µ2 = µ3 = µ4 = µ5 = δ. 

The power of Case 1 is the probability that H15 is 

rejected. The power of Case 2 is the probability that 

H14, H15 are rejected. The power of Case 3 is the 

probability that H13, H14, H15 are rejected. The power of 

Case 4 is the probability that H12, H13, H14, H15 are 

rejected. Since we should specify the value of σ2 for 

computing the power of the test, let σ2 = 1. Tables 8 

and 9 give the power of the test for δ = 0.5,1.0, 

respectively. They are calculated by Monte Carlo 

simulation with 100,000 repetitions. In Case 1 the 

differences among SS, SD, SU are not remarkable and 

they are more powerful compared to BH and BY. In 

Cases 2 and 3 BH is most powerful. In Case 4 the 

differences between SU and BH are not remarkable 

and they are more powerful compared to other 

procedures. SD and SU are always more powerful 

compared to BY. 

 

Table 1: Critical values of SD and SU for Sam.1 

 

  c2 c3 c4 c5 

SD 1.668 1.947 2.097 2.200 

SU 1.668 1.967 2.112 2.204 

 
Table 2: Critical values of SD and SU for Sam.2 

 

  c2 c3 c4 c5 

SD 1.668 1.941 2.075 2.161 

SU 1.668 1.960 2.094 2.165 

 
Table 3: Critical values of BH and BY 

 

  c2 c3 c4 c5 

BH 1.668 1.808 1.995 2.291 

BY 2.013 2.139 2.308 2.580 
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Table 4: Type I FWER for δ = 0.5 

   
Case 1 Case 2 Case 3 

Sam.1 SS 0.0399 0.0287 0.0155 

 
SD 0.0457 0.0403 0.0327 

 
SU 0.0461 0.0473 0.0365 

 
BH 0.0536 0.0641 0.0401 

 
BY 0.0255 0.0310 0.0181 

Sam.2 SS 0.0400 0.0299 0.0168 

 
SD 0.0442 0.0403 0.0348 

 
SU 0.0442 0.0466 0.0389 

 
BH 0.0486 0.0612 0.0416 

 
BY 0.0234 0.0303 0.0192 

 
Table 5: Type I FWER for δ = 1.0 

   
Case 1 Case 2 Case 3 

Sam.1 SS 0.0401 0.0285 0.0154 

 
SD 0.0497 0.0491 0.0483 

 
SU 0.0488 0.0500 0.0494 

 
BH 0.0627 0.0672 0.0491 

 
BY 0.0312 0.0331 0.0238 

Sam.2 SS 0.0399 0.0297 0.0171 

 
SD 0.0474 0.0472 0.0482 

 
SU 0.0466 0.0490 0.0491 

 
BH 0.0572 0.0638 0.0496 

 
BY 0.0286 0.0313 0.0237 

 
Table 6: FDR for δ = 0.5 

   
Case 1 Case 2 Case 3 

Sam.1 SS 0.0271 0.0140 0.0058 

 
SD 0.0303 0.0186 0.0079 

 
SU 0.0306 0.0184 0.0106 

 
BH 0.0337 0.0216 0.0114 

 
BY 0.0162 0.0101 0.0055 

Sam.2 SS 0.0284 0.0140 0.0056 

 
SD 0.0306 0.0185 0.0083 

 
SU 0.0312 0.0185 0.0106 

 
BH 0.0321 0.0214 0.0114 

 
BY 0.0156 0.0101 0.0054 

Table 7: FDR for δ = 1.0 
   

Case 1 Case 2 Case 3 

Sam.1 SS 0.0215 0.0103 0.0039 

 
SD 0.0275 0.0183 0.0120 

 
SU 0.0276 0.0184 0.0123 

 
BH 0.0354 0.0244 0.0124 

 
BY 0.0169 0.0116 0.0060 

Sam.2 SS 0.0223 0.0109 0.0043 

 
SD 0.0273 0.0183 0.0120 

 
SU 0.0281 0.0189 0.0123 

 
BH 0.0340 0.0240 0.0124 

 
BY 0.0166 0.0115 0.0060 

 
Table 8: Power of the test for δ = 0.5 

 
  Case 1 Case 2 Case 3 Case 4 

Sam.1 SS 0.209 0.094 0.057 0.038 

 SD 0.214 0.118 0.095 0.102 

 SU 0.212 0.116 0.098 0.122 

 BH 0.193 0.143 0.128 0.120 

 BY 0.124 0.080 0.067 0.059 

Sam.2 SS 0.153 0.081 0.052 0.041 

 SD 0.156 0.097 0.082 0.100 

 SU 0.156 0.098 0.086 0.113 

 BH 0.136 0.117 0.107 0.113 

 BY 0.082 0.064 0.058 0.057 

 

 
Table 9: Power of the test for δ = 1.0 

 
  Case 1 Case 2 Case 3 Case 4 

Sam.1 SS 0.707 0.567 0.478 0.420 

 SD 0.704 0.606 0.586 0.633 

 SU 0.702 0.602 0.582 0.657 

 BH 0.674 0.651 0.653 0.659 

 BY 0.566 0.522 0.508 0.502 

Sam.2 SS 0.534 0.445 0.374 0.346 

 SD 0.534 0.478 0.463 0.532 

 SU 0.528 0.476 0.464 0.557 

 BH 0.484 0.514 0.525 0.555 

 BY 0.373 0.387 0.384 0.406 
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8. Conclusions 

 

In this study we compared stepwise multiple 

comparison procedures controlling the maximum 

type I FWER with those controlling FDR applying to 

the multiple comparison with a control for normal 

means through simulation results regarding the 

maximum type I FWER, the FDR and the power of the 

test. Although Benjamini and Yekutieli (2001)’s 

procedure controls the maximum type I FWER and 

FDR, its power is lowest in almost all cases. Although 

Benjamini and Hochberg (1995)’s procedure controls 

FDR and occasionally does not control the maximum 

type I FWER, it is not uniformly more powerful 

compared to the procedures controlling the maximum 

type I FWER. We can not insist that Benjamini and 

Hochberg (1995)’s procedure is always more 

preferable for analyzing exploratory problems 

compared to procedures controlling the maximum 

type I FWER. We should construct a procedure which 

controls FDR and is uniformly more powerful 

compared to the procedures controlling the maximum 

type I FWER. 
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